

Welcome to Python AutoTask Web Services ‘s documentation!

Contents:

	Python AutoTask Web Services
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	Connecting to Autotask

	Support Files

	Querying for entities

	Query result cursor

	Updating entities

	Picklists

	Creating entities

	CRUD

	Userdefined Fields

	Getting Invoice Markup

	Additional Features

	Advanced Example

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

Python AutoTask Web Services

[image: _images/atws.svg]
 [https://pypi.python.org/pypi/atws][image: _images/python-atws.svg]
 [https://travis-ci.org/MattParr/python-atws][image: Documentation Status]
 [https://atws.readthedocs.io/][image: Updates]
 [https://pyup.io/repos/github/mattparr/python-atws/]atws is a wrapper for the AutoTask SOAP webservices API

	Free software: MIT license

	Documentation: https://atws.readthedocs.io.

Features

	Py2 and Py3 support

	Easy, programmatic query writing (no XML required)

	Query result generator retrieves all entities, not just 500

	Zone discovery (you only need a username and password)

	Picklist python module creator (IDE autofill your picklist IDs)

	Support for API v1.5 and v1.6

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Python AutoTask Web Services , run this command in your terminal:

$ pip install atws

This is the preferred method to install Python AutoTask Web Services , as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Python AutoTask Web Services can be downloaded from the Github repo [https://github.com/MattParr/python-atws].

You can either clone the public repository:

$ git clone git://github.com/MattParr/python-atws

Or download the tarball [https://github.com/MattParr/python-atws/tarball/master]:

$ curl -OL https://github.com/MattParr/python-atws/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Python AutoTask Web Services in a project:

import atws

To enable some of the additional features that process over every entity
returned by a query, the module must be imported explicitly so that it can
monkeypatch the suds library. CRUD and UserdefinedFields are imported by the
wrapper by default, but the others are not enabled by default.:

import atws.monkeypatch.attributes

Connecting to Autotask

	API v1.5

Only a username and password are required, but if you are initialising the
library often, it may pay to also include the zone url, otherwise it needs to
be discovered by performing an API lookup.:

at = atws.connect(username='user@usernamespace.com',password='userpassword')

If you have obtained an integrationcode then it must be supplied under 1.5 as well.

	From api v1.6 documentation:

	A tracking identifier is not required to access v1.5, unless the user accessing v1.5 already has an identifier assigned. In that case, the user is required to provide their identifier.

If necessary, include the integration code in the connect parameters.:

at = atws.connect(username='user@usernamespace.com',
 password='userpassword',
 integrationcode='27-char-integration-code')

	API v1.6

Autotask PSA API v1.6 requires an integration code while making the connection.
You must also specify the API version in the connect parameters:

at = atws.connect(username='user@usernamespace.com',
 password='userpassword',
 apiversion=1.6,
 integrationcode='27-char-integration-code')

Support Files

Often, Autotask support will ask for the XML that is being sent/received
in order to support a problem. Sometimes you might like to see this raw
output yourself to check date conversions or entity SAX failures.
There is a support file message plugin to copy XML files to a path you specify
when connecting to the API.:

at = atws.connect(username='user@usernamespace.com',
 password='userpassword',
 support_file_path='/tmp')

Querying for entities

The Query object:

''' In SQL this query would be:
SELECT * FROM tickets WHERE
id > 5667
AND
(
 Status = 'Complete'
 OR
 IssueType = 'Non Work Issues'
)
'''
query = atws.Query('Ticket')
query.WHERE('id',query.GreaterThan,5667)
query.open_bracket('AND')
query.OR('Status',query.Equals,at.picklist['Ticket']['Status']['Complete'])
query.OR('IssueType',query.Equals,
 at.picklist['Ticket']['IssueType']['Non Work Issues'])
query.close_bracket()
in ATWS XML, it would look like this
print query.pretty_print()

Query result cursor

The query method in the wrapper accepts the query, and returns a generator
cursor which can be used to enumerate the results:

tickets = at.query(query)
enumerate them
for ticket in tickets:
 do_something(ticket)

process them like a generator
ticket = ticket.next()

or get a list
all_tickets = at.query(query).fetch_all()

or if you know you are just getting one result
ticket = at.query(query).fetch_one()

Updating entities

Following on from the previous query result example… entities can be modified,
and then returned to the API. It’s best to do this using a generator function
so that you can process in batches of 500 and 200. The Autotask API only gets
a maximum of 500 entities per query, and can only submit 200 entities to be
processed.:

def close_tickets(tickets):
 for ticket in tickets:
 ticket.Status = at.picklist['Ticket']['Status']['Complete']
 yield ticket

tickets = at.query(query)
still nothing has been done
tickets_to_update = close_tickets(tickets)
a generator cursor result again - still nothing has been done
updated_tickets = at.update(tickets_to_update)

now the query is executed
and then the entities are modified and resubmitted for processing
for ticket in updated_tickets:
 print ticket.id, 'was closed'

if there were 1400 tickets in the results, then the following activity
would take place:
query #1 returns ticket ids 1-500
ticket ids 1-200 are submitted for processing
ticket ids 201-400 are submitted for processing
query #2 returns ticket ids 501-1000
ticket ids 401-600 are submitted for processing
##....

if you don't need to see the results, you can just:
at.update(tickets_to_update).execute()

Picklists

Many entities have picklists to describe possible id values for attributes.
Some common ticket entity picklist values are: Status, Priority, QueueID
Looking up the picklists for an entity is an API call.
There is a caching attribute on the wrapper object for accessing picklists.:

assert at.picklist['Ticket']['Status']['Complete'] == 5
assert at.picklist['Ticket']['Status'].reverse_lookup(5) == 'Complete'

Some picklists are children of parent picklists.
In a ticket, Subissue type is a child of
Issue type. These are handled differently due to possible naming conflicts.:

at.picklist['Ticket']['SubIssueType']['Hardware Failure']['Mouse']

In the example above, ‘Hardware Failure’ is an Issue Type, and ‘Mouse’ is a
Subissue Type.

Creating entities

To create an entity, you must first create the object, and then submit it to
be processed. Note that many entities have required fields.:

ticket = at.new('Ticket')
ticket.Title = 'test ticket'
ticket.AccountID = 0
ticket.DueDateTime = datetime.now()
ticket.Priority = at.picklist['Ticket']['Priority']['Standard']
ticket.Status = at.picklist['Ticket']['Status']['New']
ticket.QueueID = at.picklist['Ticket']['QueueID']['Your Queue Name Here']
#if you are just submitting one ticket:
ticket.create() # updates the ticket object inline using CRUD patch
or:
new_ticket = at.create(ticket).fetch_one()

if you are submitting many tickets, then you have the same querycursor
options. Process in submissions of 200 entities per API call:
tickets = at.create(new_tickets)
or process them all at once:
tickets = at.create(new_tickets).fetch_all()
or process them without keeping the results:
tickets = at.create(new_tickets).execute()

CRUD

CRUD feature to the suds objects returned in the wrapper.
It supports Create, Update, Refresh, and Delete:

ticket = at.new('Ticket')
ticket.Title = 'Test ticket - no id yet'
assert hasattr(ticket, 'id') is False
ticket.create() # this will create the ticket in Autotask
assert ticket.id

ticket.Title = 'I changed this'
ticket.update() # this will update the ticket in Autotask

Userdefined Fields

Userdefined Fields are a little odd in the default suds object, so they are
wrapped to provide a better interface to handle them.:

my_udf_value = ticket.get_udf('My Udf Name')

ticket.set_udf('My Udf Name', my_new_udf_value)
ticket.update()

all attributes can be accessed by index
ticket_status = ticket['Status']
if the attribute is missing, UDF will be presumed
my_udf_value = ticket['My Udf Name']
and likewise for assignment. if the attribute to be assigned isn't in the
SOAP specification, then a UDF will be assumed.
ticket['Status'] = at.picklist['Ticket']['Status']['Complete']
ticket['My New Userdefined Field'] = my_udf_value
ticket.update()

Getting Invoice Markup

Generated markup for an invoice can be fetched from ATWS by supplying invoice ID and preferred markup format (XML or HTML)

invoice_html_string = at.get_invoice_markup(3, ‘html’)

Additional Features

Attributes

Marshallable

AsDict

Advanced Example

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/MattParr/python-atws/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Python AutoTask Web Services could always use more documentation, whether as part of the
official Python AutoTask Web Services docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/MattParr/python-atws/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up atws for local development.

	Fork the atws repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python-atws.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv atws
$ cd python-atws/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 atws tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/MattParr/python-atws/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_atws

Index

Credits

Development Lead

	Matt Parr <matt@parr.geek.nz>

Contributors

None yet. Why not be the first?

History

0.5.3

	support API version 1.6 with addition of connect params (defaults to v1.5)

0.5.2

	removed picklist module and documentation references updated to us picklists

0.5.0 (2017-10-24)

	bugfixes

0.4.9 (2017-05-08)

	url lookup using get_zone_info is now completed using the requests transport

0.4.1 (2016-12-18)

	currency symbol picklist on currency entity was causing create_picklist_module

to fail to complete. Currency entity is now excluded from default entity set.

0.4.0 (2016-11-04)

	at.picklists module added

	picklists module with child field picklists

	support files debug feature (saves XML sent and received)

	query now builds XML closer to the API example documentation

	query supports special chars like @ in condition values

0.3.4 (2016-07-07)

	Py3 marshallable no longer failing due to unicode conversion

0.3.3 (2016-07-07)

	Py3 marshallable no longer failing due to basestring comparison

0.3.2 (2016-07-07)

	Py3 queries no longer failing due to encoding with BOM

0.3.0 (2016-07-06)

	PyPI install missing requirements “future” fixed

0.2.0 (2016-07-01)

	Python 3 support

0.1.8 (2016-06-28)

	First proper release on PyPI.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python AutoTask Web Services ‘s documentation!

 		
 Python AutoTask Web Services

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Connecting to Autotask

 		
 Support Files

 		
 Querying for entities

 		
 Query result cursor

 		
 Updating entities

 		
 Picklists

 		
 Creating entities

 		
 CRUD

 		
 Userdefined Fields

 		
 Getting Invoice Markup

 		
 Additional Features

 		
 Attributes

 		
 Marshallable

 		
 AsDict

 		
 Advanced Example

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/up-pressed.png

_static/up.png

_static/plus.png

